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Abstract

This project aimed to investigate the performance of a simple angle of arrival algorithm, different
methods, from the literature, were investigated. An algorithm based off cross-correlation and basic linear
algebra was then selected, and its performance was tested over a variety of conditions. These conditions
included the type of sound event, the distance from the sound source to the microphone array, cases when
two sound events overlapped, and the addition of ”non-ideal” effects. To quantify the performance of the
algorithm, it was evaluated using the average absolute error between the predicted angle and the true
angle.

Overall, the performance of the algorithm depended largely on the use-case. It performed better with
some sound classes, and much worse with others. Neither the incident angle, nor the synthetic non-ideal
effects seemed to affect its performance markedly; however, there was much room for further investigation.
Importantly, the distance from the source to the microphones, and the overlapping of sounds did have a
noticeable effect on the average accuracy.
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1 Introduction

Human beings have learnt the ability to figure out which direction a sound is coming from. For a computer to
do this, multiple microphones can be used along with a combination of signal processing methods. There are
many algorithms that process data from a microphone array to calculate an angle on the horizontal plane,
the azimuth angle, and an angle in the vertical plane, the elevation angle. Using these angles the direction
to a sound source can be found as shown in figure 1.

Figure 1: Diagram showing the azimuth angle (θ) and the elevation angle (φ)

There are several conventions for the way the azimuth and the elevation angles are defined. This report uses
the definitions shown in figure 1, where the azimuth angle, θ, is the angle in the xy plane, from the x-axis to
the component of the vector from the sound source to the origin, in the xy plane. The elevation angle, φ, is
described as the angle from the xy plane to the vector from the sound source to the origin.

Many methods exist to calculate the direction of arrival, some are more complex than others. Some methods
use neural-networks [1] and head related transfer functions [2], while others use simpler signal processing
techniques along with linear algebra [3]. This leads to the question: How well does a straightforward angle of
arrival algorithm, based on the time difference of arrival (TDOA) and some simple linear algebra, perform?
And how will its performance change in differing conditions such as: distance to the sound source, type of
sound, echo, overdrive, and multiple sounds at the same time (i.e sounds overlapping)?

Based off the literature, the hypothesis was that the algorithm would perform well in producing small errors
when used in fairly simple contexts, and it was assumed that it would work equally well across a variety of
sound classes. It was further predicted that the position of the sound source would not affect the accuracy
significantly. When two sounds overlap, and non-ideal effects such as reverb, echo, and overdrive are added,
it was expected that large errors would result.

This report starts with a literature review, where the theory of the angle of arrival algorithm is discussed,
as well as a few alternative methods. This is followed by a description of the chosen method, which includes
a short discussion on the data set used for testing the algorithm. Finally the results are discussed and
conclusions are made.
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2 Literature Review

Sound localization has been studied for many years; consequently, there is a substantial amount of literature
on the topic. Modern research has attempted to use novel techniques to improve the shortcomings of previous
work – including the use of Head-Related Transfer Function (HRTF) models [2, 4, 5], neural networks [1, 6],
physical moulds of artificial pinnae [7], and various other new approaches. In this report, however, the focus
was on implementing a straight-forward time difference of arrival algorithm – arguably a simpler and more
traditional localization algorithm – and attempting to understand its limitations. This simple method uses
the received audio signals from four microphones in a tetrahedral arrangement, to determine the angle at
which a sound source exists in space, relative to the microphones. Fundamentally, the localization process
can be broken into two distinct parts: firstly, estimating the time delay1 between the pairs of received signals
in the array; and secondly, calculating the angle of arrival of the sound source using these estimated time
delays. Each of these will be discussed briefly below.

2.1 Time Delay Estimation

2.1.1 Signal Model

Consider two signals, f1(t) and f2(t), arriving at microphones M1 and M2 respectively. Though any
digital signal will in fact be discrete and finite-time, the theory will first be developed for the continuous
and infinite-time case. To simplify matters, an explicit assumption is made that the received signals are
approximately identical, except for a time-shift, and possibly an attenuation factor2 [10]. That is,

f2(t) ≈ γf1(t− t0) (1)

where t0 is the time delay, and γ is the attenuation factor. Assuming the distance between the microphones
is small, the latter should be approximately unity, (i.e. γ ≈ 1).

2.1.2 Cross-correlation

The cross-correlation between the two continuous signals, f1(t) and f2(t), is defined in [11] as:

(f1 ? f2)(τ) :=

∫ ∞
−∞

f∗1 (t)f2(t+ τ)dt (2)

where f∗1 (t) is the complex conjugate of f1(t). Substituting (1) into (2) yields:

(f1 ? f2)(τ) = γ

∫ ∞
−∞

f∗1 (t)f1(t+ τ − t0)dt (3)

= γ(f1 ? f1)(τ − t0) (4)

which is just the autocorrelation of f1, shifted by the time delay, t0, and scaled by γ.

The output of the cross-correlation function indicates the degree of similarity between the two signals at
various time-shifts. It can be easily shown that the autocorrelation function has a global maximum at τ = 0
(i.e. with no time shift, which is logical as a signal is perfectly similar to itself) [12]. That is,

(f1 ? f1)(0) ≥ (f1 ? f1)(τ) ∀τ ∈ C (5)

Hence, the following conclusion can be made about the time delay [13]:

t0 = argmax
τ∈C

(f1 ? f2)(τ) (6)

1Sometimes called the interaural time difference [8], as homage to the neuroscientific theory of how humans and animals
localize sound, using their two ears [9].

2Benesty et al. directly address the complexities of noise, multi-path propagation, etc. and quantify these effects in [10], but
such considerations are outside of this report’s scope.
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2.1.3 Discretization

In reality, of course, the signals received at the microphones cannot be infinite, nor represented in a continuous
form. Instead, they are real-valued, finite-length, discrete sampled representations of the real-world audio
signals. Consequently, a discrete cross-correlation formulation must be used, as shown in [14]. Moreover,
instead of a time delay of t0, there is now an integer sample delay of n0. Assuming the signals f1[n] and f2[n]
contain the same number of samples, N , the sample delay can be calculated as:

n0 = argmax
n∈Z

N−1∑
k=0

f∗1 [n]f2[((k + n))N ] (7)

where ((x))N = x mod N .

The calculation of (7) can be performed fairly easily in a modern programming language. There are many
packages that provide built-in time-domain cross-correlation functionality, and finding the argmax of the
resulting array is trivial.

It is important to reiterate here that the discretized situation means that instead of a continuous time
delay, t0, there is a integer sample delay, n0. This places an unavoidable limitation on the accuracy of
the algorithm [3]. Suppose the received audio signals were sampled at a rate, fs. This means that the
time between any two samples—i.e. the sampling period—is Ts = 1

fs
. This period is also the minimum

recognizable difference between the signals received at two different microphones. Thus, when calculating
the angle of arrival—which is shown later—using the discretized time value, the resulting angle value is
discretized too. That is, the output of the algorithm can only assume a set of discrete values, introducing
an inevitable error. The worst case of this error is when the real-world time delay, t0, falls exactly halfway
between the two samples of the signal, hence maximising the discretization error. Mathematically:

max

∣∣∣∣n0fs − t0
∣∣∣∣ =

Ts
2

(8)

This error, which is dependent on the sampling frequency, then propagates into the angle calculations below.
The analytical solution of the final angle error due to discretization is outside of the scope of this report;
however, this discussion provides a good insight as to why some of the errors may occur.

2.1.4 Fourier Domain Approach

Alternatively, the cross-correlation can be calculated using Fourier domain methods. The cross-correlation
theorem [15] in continuous time states that:

(f1 ? f2)(τ)
F−→ F ∗1 (Ω)F2(Ω) (9)

where F1(Ω) and F2(Ω) are the Fourier transforms of f1(t) and f2(t) respectively. Using a discrete approximation
of this theorem, the sample delay can be calculated as:

n0 = argmax
n∈Z

IDFT{F ∗1 F2}[n] (10)

where IDFT is the inverse discrete Fourier transform. This approach can be highly efficient when using
the fast Fourier transform algorithm [16], depending on the size of the input. Empirical analysis would be
required to determine which of the two methods is ideal in a given context; however, for the scope of this
project, only the time-domain approach was used.

2.1.5 Alternative Methods

It is worth noting that there are many other methods that are conceptually similar to the time-delay approach.
For example, almost a century ago, Friis et al. used the phase difference of received signals to estimate the
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direction of arrival of short radio waves [17]. More recently, Cobos et al. in [18] used the time-frequency
domain in a similar way, ultimately also comparing the phases of incident waves. Unfortunately, this
approach results in an unavoidable spatial-aliasing effect—which is a function of the distance between
the microphones—due to the 2π phase ambiguity. Other approaches include using the power difference
of arrival [19], or the interaural level difference [20]. None of these approaches were considered in further
detail for this report, though.

2.2 Angle of Arrival

2.2.1 Two-dimensional Approach

Figure 2a shows a simple representation of the tetrahedral microphone array. Consider specifically two of
these microphones, M1 and M2, and the plane formed by these two points and S, the source of audio signal
– for simplicity, S is assumed to be a point source. Provided the source is in the far-field, the incident wave
on the microphones can be approximated to be planar [10]. Let the distance between M1 and M2 be x12,
and the angle between the midpoint of x12 and S be θ. Finally, let the time between the plane wave hitting
M1, and M2 be τ . Figure 2b shows a top-down view of this arrangement.

M1M1

M4M4

M2M2

M3M3

M1

M4

M2

M3

(a) Simple graphic showing a tetrahedral microphone
arrangement.

M2

M1

x12

Sound Source

Wave
cτ

θ

θ

A′

(b) The triangular arrangement formed by the incident
plane wave and two of the microphones.

Figure 2: Graphics showing the microphone arrangement for the project

Notice that the arrangement in figure 2b forms a simple right-angled triangle. Once the time delay, τ , between
the wave hitting M1 and M2 has been estimated, fairly simple trigonometry can be used to find the angle of
arrival. The angle of arrival for this two-microphone setup is easily calculated as:

θ = arccos
( cτ
x12

)
(11)

where c is the speed of sound in air.

Kunin et al. [21] state that to find both angles in three-dimensions, a cross type microphone can be used,
and then the method above can be applied to the horizontal and the vertical branches. However, this process
is a bit more complicated if the microphones are not aligned with the global x, y and z axes.

2.2.2 Generalized Three-Dimensional Approach

The simple two-dimensional approach can be generalized to calculating the angle of arrival in three-dimensional
space. Let the displacement from the sound source to the microphone arrangement be normalized and divided
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by the speed of sound. The result is defined as the propagation vector, k. That is,

k =
1

c

xo − xsrc
||xo − xsrc||

=
1

c
[cos(φ) cos(θ) cos(φ) sin(θ) sin(φ)]T (12)

where x0 and xsrc are the positions of the center of the microphone array and the source of the sound
respectively and θ and φ are the azimuth and elevation angles respectively [18, 22]. The sensor vector
between the ith and jth sensor in an array is defined as

xij = xj − xi (13)

where xn is the position of the nth sensor [22]. Thus, looking at figure 2b, if one knows θ, then one can

calculate τ using x12 cos(θ)
c . In this case x12 is the x-component of x12, where the y-component is zero. In

general, as shown in [3], the relationship between the sensor vector, the propagation vector, and the time
delay is:

τij = kTxij (14)

For a given microphone array, let the matrix V contain all the sensor vectors, and the vector τ contain all
the time delays. That is,

V =[xi1j1 xi2j2 ... xinjn ]T (15)

τ =[τi1j1 τi2j2 ... τinjn ]T (16)

If n time delays are calculated, then V will have the dimensions n× 3, and τ will have the dimensions n× 1.
As shown in [22], equation (14) can therefore be extended to,

τ = V k (17)

Since V is not necessarily invertible, a linear least-squares approximation [23] can be used:

⇒ k = (V TV )V T τ (18)

Finally, the angles of arrival can be calculated [18] using:

θ = arctan2(ky,kx) (19)

φ = arcsin

(
kz
||k||

)
(20)

2.2.3 3D Angle of Arrival in the Fourier Domain

An alternative method of calculating the propagation vector is described by Cobos et al [18] using the phase
difference between the ith and jth sensors. The phase difference at a frequency α is,

∠

(
Xj(α)

Xi(α)

)
≈ 2πα

c
xTijk (21)

For multiple sensors, the vector B(α) is contains the n phase differences used (similar to τ in equation (15)),
and thus

k =
c

2πα
V −1B(α) (22)

As before, θ and φ can then be calculated using equations (19) and (20).

Given the scope of this project, only the first approach was considered.
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3 Method

3.1 The Data Set

In order to test the algorithm comprehensively, a reliably labelled and suitably large data set was required.
Though several sets were considered, the collection of recordings from the TAU Spatial Sound Events 2019 was
suitable for this project, and was used for all investigations. Specifically, the Microphone Array (Development)
audio data was used, together with its associated metadata. This set was originally part of the DCASE 2019
Sound Event Localization and Detection (SELD) task [24], where participants were required to both localize
and classify various sound events from an array of microphone recordings. Though the current project did not
cover the classification of recordings, the class labels nevertheless provided an key insight into understanding
the performance of the algorithm in a variety of conditions.

A full description of the data set can be found in [25]. Each audio file was stored in a 4-channel, lossless WAV
format, sampled at 48kHz, with each channel representing the received signal at one of the microphones. In
fact, these recordings were made using the Eigenmike – a 32-element spherical microphone array3 – from
the company MH Acoustics LLC. Four of the 32 signals were extracted. The signals extracted were from
channels 6, 10, 26, 22 and were chosen because the positions of these microphones form a tetrahedron. The
positions of the microphones used, in spherical coordinates, were:

M1 = (45◦, 35◦, 4.2 cm) M3 = (135◦,−35◦, 4.2 cm)

M2 = (−45◦,−35◦, 4.2 cm) M4 = (−135◦, 35◦, 4.2 cm)

where the first angle given is the azimuth angle, and the second is the elevation angle. The last measurement
is the distance from the centre of the microphone to the origin [6].

Two loudspeakers in the far-field of the microphone array were used to play a ‘maximum length sequence’
(which can suitably approximate an impulse) at many known locations in space, at various azimuth and
elevation angles. These ‘impulses’ were then recorded by the microphones. In total, 324 recordings were
made at 1 metre away from the centre of the microphone array, and 180 recordings at 2 metres away. These
recordings were done in 5 unique indoor environments, with a range of furniture compositions, room sizes,
and roof materials. Surrounding ambient noise was recorded separately, and added in to all recordings
afterwards. It was ensured that the magnitudes of the impulses were at least 30dB greater than the level of
the surrounding ambient sound.

For the sake of the DCASE event the impulse recordings were then used to synthesize various classes of
received signals, such that they could be ‘classified’ in the task. To do this, simple recordings of 11 different
classes of sound events were used, as described in [26]. A particular sound event was convolved with a random
impulse recording – thus simulating that sound event at the impulse location in space. This was done for
the entire data set of impulses, with equal representation across the classes. Finally, collections of sound
events were integrated temporally into 400 audio clips of 1 minute each. Around one third of the temporal
integration allowed for no overlapping of events, and the remaining two thirds allowed for at-most two events
to overlap at any given time.

For the testing of this project, all eleven classes were used from the data set. Six examples of different classes
are shown in figure 3. It is important to note that the waveforms vary considerably in amplitude, length, and
sparsity. All of these factors were predicted to play a role in the effectiveness of the simple angle of arrival
algorithm.

3.2 Algorithm Implementation

The implementation of the algorithm was done in Python 3.7, with much of the core functionality designed
using the numpy and scipy libraries. All of the code was run on an Apple MacBook Pro, Early-2015

3More information is available at: https://mhacoustics.com/products
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Figure 3: Time domain waveform for examples of various event class

model, with a 2.7GHz dual-core Intel i5 processor, a 128GB solid-state drive, and 8GB of LPDDR3 on-board
RAM.

Before the actual algorithm could be applied to the data, the individual chunks from the minute long
recordings needed to be separated, and labelled accordingly. This entailed reading the metadata file alongside
the audio file. Each of the 400 recordings had one corresponding metadata file, which was just an array of
CSV entries, with each entry indicating a particular event within that recording. All chunks in a particular
recording shared the same parameters of location and an ‘overlap count’ (either 1 or 2, where 1 indicated no
overlap). For each chunk within a recording, the CSV columns indicated the temporal onset and offset times,
the class of the sound, as well as the true elevation, azimuth, and radius values. Using the timestamps for
each chunk, together with the known sample rate of 48kHz, the WAV file recordings could be read, sliced into
individual events, and labelled appropriately. For each sound event, then, there were four arrays of values,
one for each channel, coupled with that event’s corresponding labels.

The first part of the algorithm entailed estimating the time delay between each pair of the four microphone
signals using correlation. This was trivial in Python, particularly when using the functionality from the
numerical library, numpy. The index of the peak output of the correlation function was calculated, and
converted from samples to seconds by dividing by the sampling rate. The time delay results of each pair of
microphones was then placed into a taus array.

The second part of the algorithm entailed setting up the arrays correctly, and invoking the appropriate linear
algebra functions. The matrix V was populated with the sensor vectors, using the x, y, and z positions of
the microphones, which were calculated from the spherical coordinates of the tetrahedral arrangement. Note
that the order of the sensor vectors in V matched the order of the time delay pairs added to taus. With V

and taus populated, numpy’s Linear Algebra library was used to calculate the least squares solution for the
propagation vector – using equation (18). From this, the estimated azimuth and elevation angles could be
calculated using simple trigonometric functions.

The simplified, general algorithm for calculating the angles of arrival in Python (pseudocode) is shown in
listing 1.
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Listing 1: General algorithm for calculating the angles of arrival for an event

# 4 channels of current event

channels = [[channel_0], [channel_1], [channel_2], [channel_3]]

# Calculate time delays and put into vector ’taus’

for i in range(4):

for j in range(4):

sample_delay = argmax(correlate(channels[i],channels[j]))

time_delay = sample_delay/fs

taus.append(time_delay)

# Populate the matrix of sensor vectors, ’V’

for i in range(4):

for j in range(4):

sensor_vector = microphone[i] - microphone[j]

V.append(sensor_vector)

# Apply linear least squares approximation

k = inverse( transpose(V) * V ) * transpose(V) * taus

# Calculate result

azimuth = arctan2(k[2], k[1])

elevation = arcsin(k[3]/norm(k))

3.3 Planned Experiments

Recall that the core of this project was to evaluate the performance of a simple approach to sound localization.
To do this, a series of controlled experiments was run on the data, using an array of varying parameters.
The entire data set was used for testing, which included 400 sound files, each composed of a multitude
of event clips. In the end, over 60 000 individual event estimation tests were done, over a variety of test
conditions.

A Python script was written to automate this process: each test was run with set parameters, and the results
thereof were saved into a CSV file – containing all the information about that test, such as the location index
of the original impulse recording, the overlap count, the event’s class, and so on. Most importantly, included
in the CSV output were the estimated- and true values for both the azimuth and elevation angles. All of this
data was then taken into Microsoft Excel, where it was sorted, filtered, plotted, and analysed.

The experiments run for this project are summarised briefly below:

• Basic test: all data, no effects, no overlap

• Class Dependence test

• Radius Dependence test

• Location Dependence test

• True Angle Dependence test

• Overlap test

• Synthetic Audio Effects test
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Each of these tests either grouped the data by some parameter, or applied some simulated non-ideal effect
to the audio, and considered the performance of the algorithm over many test cases. For example, in the
overlap test, the algorithm was run on an event played in isolation, and again run when it was played while
overlapping with another event; the results of these two runs were then compared.

Moreover, throughout these experiments, a overarching issue was investigated: the impact of the event class
on the accuracy of the results. This proved to be a critical insight into the performance of the algorithm.
Thus, many of the results from the experiments were explicitly grouped by class membership in the output
plots.

3.4 Simulated Non-ideal Conditions

Two of the experiments aimed to understand the impact of so-called ‘non-ideal’ conditions – somewhat more
realistic scenarios – on the algorithm’s performance. One of these was to look at how the results changed
when two events were overlapping, compared to when they were not. Fortunately, the data set already
provided cases of events with overlapping timestamps, as this formed part of the original DCASE challenge.
Thus, when considering the impact of overlap, no additional effort was required to set up the tests.

The other non-ideal situation considered was the presence of synthetic audio effects, which attempted to
mimic the real-world phenomena of echo, reverb, and overdrive. Each of these effects may naturally arise
in certain physical scenarios, such as when attempting to localize in a large reverberant hall, or when there
is excessive gain on the recording channel. To simulate the impact of such scenarios, the event data were
altered in software using a simple audio-effects library. Granted, using synthetic effects is not a great picture
of reality: a real-world recording of an echoey room will introduce a host of new complications, and this is
similarly the case for the other effects. Nevertheless, this straightforward approach allowed an initial glance
into the impact of such effects on the algorithm. There is certainly scope for more realistic investigations,
based on the insights of this simple approach.

To add the audio effects in Python, the pysndfx library4 was used. This package is actually just a wrapper
for the powerful Sound eXchange (sox) audio processing tool, which usually uses a command-line interface.
The pysndfx interface allows one to apply a host of effects on conventional numpy arrays, which made the
simulation process trivial. As mentioned already, three effects were used, and the parameters thereof are
given below:

• Echo: Gain In = 0.8; Gain Out = 1; Delay = 500ms; Decay = 0.5

• Reverb: Reverberance = 100; Wet Gain = 2

• Overdrive: Gain = 50

Consider figure 4 which shows the impact of the synthetic effects on the laughter sample from figure 3b.

3.5 Performance Metrics

To understand the performance of the time-delay algorithm, some sort of metric had to be chosen – something
which would indicate the degree of success, or failure, across a range of data. Though many such metrics
exist, each with particular qualities and drawbacks, this report used a simple error-based approach: the
absolute error between the target angle, and the estimated angle.

Note, however, that the calculation of the error was not a näıve subtraction of the two values, as this would
ignore the angular periodicity of the problem. For example, suppose the target angle was −180◦, but it was
estimated as 179◦. Simply subtracting these values would yield an absolute error of 359◦, whereas in fact
the angles are only 1◦ apart. It is thus intuitive that the maximum possible error for any estimated angle is
180◦. To account for this fact, the difference between the two angles was confined to the principal range of

4More information is available at: https://pypi.org/project/pysndfx/
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Figure 4: Time domain waveform showing the impact of the synthetic effects on a sample laughter event,
where the blue signal is the original sound clip, and the red signal is the clip post-effect.

[−180◦, 180◦), resulting in an absolute error in the range [0◦, 180◦]. This was done mathematically using the
following process, for an arbitrary angle X:

|X|180◦ =

{
X mod 360◦ if (X mod 360◦) ≤ 180◦

360◦ − (X mod 360◦) if (X mod 360◦) > 180◦
(23)

The errors for the azimuth and elevation angles were then respectively defined as:

Eθ = |θ − θ̂|180◦ (24)

Eφ = |φ− φ̂|180◦ (25)

where θ̂ and φ̂ indicate the algorithm’s output estimates, and θ and φ are the true angles of arrival from the
sound source.

Since the algorithm was run on a collection of data, individual errors were mostly not considered in isolation.
Instead, the errors were aggregated into a simple average value, indicating the overall performance achieved.
Note that for each experiment done, the data was arranged into a variety of groupings – based on class, effect,
location, etc. – and for each group, the average was calculated only over the members of that group. For
example, when looking at the error for the speech events, only the speech event predictions were averaged,
which is intuitive. All results presented in this report followed such a format, across a range of tests. For a
given grouping, G, which contains NG events, the absolute error was thus calculated as:

Ēθ =
1

NG

NG∑
i=1

|θi − θ̂i|180◦ (26)

Ēφ =
1

NG

NG∑
i=1

|φi − φ̂i|180◦ (27)

Notice that the errors of azimuth and elevation were not combined into a single metric. This was purposeful,
as combining them would possibly lose interesting insights into the data. For all of the results, these angles
were analysed separately.

Lastly, note that in some circumstances, instead of analysing the absolute error, the change in the error was
considered – where a positive error change indicated a worse error than before. That is, when referring to
the percentage error change from event A to event B:

∆Ē =

(
ĒB − ĒA

ĒA

)
(28)
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4 Results

The results of the experiments done are detailed in this section. Each experiment begins with a brief recap
of its setup, followed by a presentation of the results obtained, and thereafter an analysis.

4.1 Basic test: all data, no effects, no overlap

This first test was to understand the ‘raw performance’ of the localization algorithm. In a sense, this
experiment aimed to use conditions which were somewhat ‘ideal’; whereas the addition of effects and overlap
emulated non-ideal conditions. While there was already ambient noise added to all of the audio files in the
original data set, it was fairly small. This test thus served as a baseline for future tests.

All of the non-overlapping data elements were used for this experiment – across all classes, locations, angles,
and at both at radii. No audio effects were added to the files. The spreads of the absolute error results from
these tests are shown as box-and-whisker plots in figure 5.
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(a) Results for azimuth angle, θ

0 20 40 60 80

100

120

140

160

180

0 20 40 60 80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180
Absolute Error [Degrees]

(b) Results for elevation angle, φ

Figure 5: Boxplots showing the absolute error between the target- and estimated- angle values.

Moreover, the key descriptive statistics for these results are highlighted in table I.

The immediate observation from these results were the numerous – and considerably large – outliers. Both for
the azimuth (figure 5a) and elevation (figure 5b) results, some of the absolute errors were clearly unacceptable.
For example, the azimuth error of 180◦ for one of the events is the worst possible situation – the algorithm
could not have been more wrong. Unfortunately, this already shows that the algorithm simply cannot be
used in critical situations, where accuracy is paramount. This fact was not necessarily surprising – given the
simplicity of the approach – but was nevertheless clear.
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Ēθ Ēφ
Mean 5.823◦ 5.711◦

Std Dev 14.54◦ 7.037◦

Median 3.428◦ 4.160◦

Table I: Descriptive statistics for the basic
experiment’s error results

Ēθ Ēφ
Mean 4.218◦ 4.999◦

Std Dev 5.187◦ 4.230◦

Median 3.270◦ 4.064◦

Table II: Descriptive statistics for the modified basic
experiment’s error results, where the phone class was
excluded

The results are not completely bleak, though. It is important to note that this experiment alone considered
over 5000 events. Indeed, outliers did exist – and these could not just be ignored – but majority of the errors
were far smaller than these outliers. One can see both in the boxplots, as well as in the statistics from table I,
that the algorithm performed fairly well on the whole: with an average error of just under 6◦ for both angles,
and a median even smaller than that.

Note that the elevation angle had a smaller spread than that of the azimuth (and a smaller maximum error).
This is likely because a smaller range of incoming angles were considered: in the DCASE data set, only
elevation angles of [−40◦, 40◦) were recorded, whereas the azimuth angles were varied over a full revolution,
[−180◦, 180◦).

These early results seem to suggest that, instead of being a completely useless algorithm, its use-case should
be constrained. Since it is a straightforward approach, it may be suitable for situations where costs –
development effort, power usage, etc. – are to be minimized, but a handful of seriously bad results are
acceptable.

4.2 Class Dependence test

Consider the basic algorithm performance, now grouped by the event classes, still using the entire data set
of non-overlapping sounds. Figure 10 shows a plot of the average absolute error for each group.
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Figure 6: Absolute error for raw performance, split across the event class categories.

It is fascinating to note the massive distinction between the average error of the phone class, compared to
the other classes. The variations amongst the other classes seem to be mostly negligible – varying only by a
few degrees. The phone class, on the other hand, had noticeably larger errors than the rest of the group – a
difference which could not be explained by mere chance. In fact, removing the phone class from the overall
grouping improved the results drastically – reducing the mean, average, and median error. Consider table II
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for these results. In particular, note the massive reduction in standard deviation when the phone class was
removed, showing that it accounted for many of the previously shown outliers.

It is fair to conclude that for this particular event class – and perhaps for others that were not tested –
the simple time-delay approach to localization performs poorly. More investigation would need to be done
to make meaningful explanations of this fact – such as comparing the spectral components of the various
event classes, and so on – but one theory is that the periodic nature of the ringing phone results in problems
when finding the peak of the correlation function. Either way, it is an interesting exposure of a flaw in the
algorithm.

4.3 Radius Dependence test

Consider next the effect of the radius of the sound source on the achieved estimation error. While the
algorithm in this project could not reliably calculate the distance of the sound source to the microphone
array – this was a known limitation – it was nevertheless interesting to understand how the radius affected
the algorithm’s ability to identify the incident angle of the sound. The data set had recordings of sound
sources at both 1 and 2 metres away, and results up to this point have considered the distances together.
Now, figure 7 shows the error change, ∆Ē, when moving the distance from 1 metre to 2 metres. Recall that
a positive error change means that the algorithm’s ability deteriorated – the error became larger.
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(a) Results for azimuth angle, θ
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(b) Results for elevation angle, φ

Figure 7: Accuracy change across event categories when moving source radius from 1 to 2 metres.

A couple of things are apparent about the radius dependence. Firstly, notice that the absolute error of the
elevation angle estimation only became worse – with ∆Ēφ > 0 for all classes. In some cases, too, the error
deteriorated badly: for example, for the clearthroat and the knock classes, the error increased by around
60%, which is a considerable amount. Yet for other classes, such as the keyboard and the doorslam, a
minimal change was recorded. Secondly, notice that the azimuth error’s results are mixed – in some cases,
the algorithm performed better at a further radius, and in other cases, it performed worse.

It is difficult to know the exact meaning of these results. Naturally, at a larger radius from the microphone
array, the sound wave from the source must propagate a further distance. As the sound propagates, assuming
it is moving uniformly in all directions, its amplitude will ideally decay proportional to ( 1

R2 ). This means
the received waves from 2 metres away should have an amplitude at least 4 times smaller than those from 1
metre away. This certainly could explain the poorer performance of the algorithm, but fails to describe the
improved performance, as was the case for some azimuth angles. It is clear, then, that deeper investigation
is required into these phenomena.
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4.4 Location Dependence test

Recall that the impulse recordings were done at five separate locations, each with unique acoustic characteristics
and layouts. However, note that the data set simply referred to these locations with the indices 0 to 4, and
those who recorded the data only provided bare-bones textual descriptions of the scenes – “large corridor,
hard floors”, for example. Moreover, several of the scenes were described with similar wording. It would
thus have been difficult to infer defining characteristics from these descriptions, and any deductions made
would likely ignore the true complexities of the environment. Thus, this experiment just sought to establish
if there was a change in error across the locations, and not deduce explanations for observed differences, if
any.

The experiment included all the non-overlapping data, across all classes and at both radii, but grouped the
results by their original impulse recording location. Since there was no ‘correct’ recording location, using an
error change metric was inappropriate; instead, the absolute error for each location was considered. Figure 8
shows the results of the tests.
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(a) Results for azimuth angle, θ
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(b) Results for elevation angle, φ

Figure 8: Absolute error compared across the five recording locations.

In this test, the results were fairly uninteresting. While there were differences between the errors across the
locations, most noticeably so for the azimuth angles, they only amounted to a few degrees. Indeed, a few
degrees did represent a somewhat significant error change between the locations, but one must remember that
this experiment included data across all classes. As already seen, the class dependence was a major factor in
the error results, and could have adversely affected these results. Moreover, recall that in the creation of the
data set, impulse recordings from defined locations were convolved with random event samples from the 11
classes. This randomness may have introduced anomalous results, and could explain the differences between
the locations. Having said that, this is not a certainty.

Once again, deeper investigation would have to be done to order to make more robust conclusions. On the
surface, though, there is no marked difference between the calculated errors.

4.5 True Angle Dependence test

This experiment aimed to understand if the true angle of arrival from the sound source affected how accurate
the algorithm was. Already it has been shown that there were some peculiar results indicating radial
dependence – particularly for the elevation estimation. The angle dependence was expected to be different,
however. Whereas the radius to the sound source directly affected the amplitude of the incoming wave,
the angle was expected to be irrelevant due to the symmetric tetrahedral shape of the microphone array
setup.

All the non-overlapping data was used for this test, and figure 9 shows the resulting absolute error metric,
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plotted against the range of true angle values. Moreover, a straight line of best fit – using least squares
regression – was calculated and superimposed for each of the angle plots. Recall that for the azimuth angle,
the true angle values were recorded in steps of 10◦ over the full revolution of [−180◦, 180◦); and for the
elevation angle, the same step size was used, but over a reduced range of [−40◦, 40◦).
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(b) Results for elevation angle, φ

Figure 9: Absolute error considered against the true received angle value

Firstly, consider the plot in figure 9a, for the azimuth angle. This set of results had a large number of
individual data points, as there were many distinct azimuth angles used in the original data set. According
to the regression coefficients, there was no linear relationship between the true azimuth angle, and the
algorithm’s error, (with R2 = 0.02). Furthermore, by simply judging the plot visually, one cannot seem to
find a clearly defined non-linear relationship either. Instead, by the looks of it, the discrepancies in the errors
across the range of angles were somewhat random. Once again, this randomness could perhaps be explained
by the method in setting up the data set, with higher errors from certain event classes randomly matching
with some angles more than others, thus skewing the data.

Secondly, consider figure 9b, for the elevation angle. Unfortunately, there were fewer unique elevation angles
used in the original data set – compared to many unique azimuth angles over a larger range – and this resulted
in a sparser plot. One may be tempted to infer the conclusion from the azimuth case – that there was no
angle dependence – to the elevation case. However, as seen in most of the previous experiments, interesting
differences exist in the algorithm’s performance when determining the azimuth and elevation angles. And
indeed, in the case of the few elevation angle points, there was actually a weak linear relationship evident
in the data. This possibly indicates that as the true elevation angle increased from −40◦ to 40◦, the error
worsened. This relationship is markedly weak, however, and is based off only a handful of points. To make
this claim more convincing, one would need to do more tests, using more distinct angles, and possibly over
a larger range.

On the whole, then, there did not seem to be a noticeable relationship between the angle of arrival and the
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corresponding absolute error. If such a relationship did exist, it was not particularly impactful.

4.6 Overlap test

The next completed experiment entailed temporally overlapping two sound sources. The data set used in this
project already included overlapping sound chunks, and so testing this was straightforward. At most, two
events were allowed to play simultaneously, and the overlapping event class was chosen at random. Consider
figure 10, which shows the absolute error of each class, for both angles of arrival.
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(b) Results for elevation angle, φ

Figure 10: Absolute error compared between no overlap, and random overlap, across the event categories.

The results of this test exposed an unequivocal flaw in the algorithm’s approach: it could not reliably localize
an audio source when the sound produced by the source was overlapping with a separate sound. Notice in
the figure how, when the events overlapped, the average errors increased dramatically – for example, in the
case of the keyboard class, the azimuth error increased tenfold, to over 65◦. Furthermore, note how the
severity of the problem varied across the event classes, with some classes affected by considerable amounts,
and others not as much. The performance of the speech and clearthroat classes deteriorated the least, for
both the elevation and azimuth angles.

These findings were not actually surprising when considering the theory used in the localization algorithm.
Since the received time domain waveforms needed to be correlated for time-delay estimation, a loud overlapping
signal coming from a different direction caused the weaker signal to be ‘hidden’ in time, unable to be
detected by the cross-correlation process. Instead, the louder signal redirected the localization output,
and thus caused large errors. This notion is supported by the results seen in figure 6, where the events
with sparse, low-amplitude time-domain waveforms struggled against those with large-amplitude, dominant
waveforms. For example consider the speech and clearthroat waveforms shown previously in figures 3f
and 3c respectively, and compare them to the keyboard and knock waveforms from figures 3a and 3d, where
the latter two signals performed far worse than the former two.

It is interesting to note that the elevation angle estimation, while indeed negatively affected by the overlapping
sounds, was (on the surface) more robust than the azimuth angle estimation. As the worst case event class,
the keyboard class average error rose only to 20◦. It is crucial, however, not to draw the wrong conclusions
here. The distinction (or at least part thereof) can be explained by two factors. Firstly, there were fewer
unique elevation angles used in the data set, with only 9 possible angle values, compared to the 36 possible
azimuth angles used. This unavoidably meant there was a higher chance that the overlapping sound would
have the same elevation angle to the actual sound being localized. Thus, on aggregate, even when dominating
sounds played over weak sounds, the average error between them would be smaller. Secondly, the range of
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the elevation angles was limited to [−40◦, 40◦). Thus, the smaller errors were not only due to the fewer
number of possible angle values, but the fact that an overpowering sound’s elevation angle could, at most,
be 80◦ away from that of the correct sound’s location. This should be compared to the azimuth angle, which
could at most be 180◦ away.

Now, it is not impossible that for other reasons, the elevation angle is generally more accurate than the
azimuth angle. Several of the previous experiments may even support this claim. However, a wider array of
tests would need to be run, across a broader range of angles, in order to understand such an effect truly, and
in order to make meaningful conclusions about it.

In essence though, for the azimuth and elevation angles alike, the overlap test harshly affected the accuracy
of the estimated angle of arrival. This is a massively important note to make, because sound localization
in reality will often occur in a multi-source environment. The algorithm would clearly struggle in such
conditions, and would thus be unsuitable. However, once again, this does not necessarily make the approach
completely pointless; rather, it depicts a constraint on the applications for which such a simple algorithm
would be appropriate.

4.7 Synthetic Audio Effects test

Finally, the last experiment involved applying synthetic audio effects to the received recordings to emulate
various physical phenomena. Specifically, effects of echo, reverb, and overdrive were applied separately to
all the non-overlapping events in the data set. Figure 11 shows the results of these tests, grouped by class
membership. The plots are shown with respect to the error change, ∆Ē, from the pre-effects, original sound
event, to the post-effects event. Once again, a positive error change here indicates that the performance has
deteriorated.
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Figure 11: Accuracy change across event categories after simulating three synthetic audio effects
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Somewhat surprisingly, on the whole, the applied effects actually made little difference to the achieved errors.
Granted, there were a few notable exceptions – such as the application of overdrive to the knock signal, which
increased the average error by 20%. Moreover, in a bizarre way, for some classes the audio effects actually
improved the average accuracy. The phone event, for example, had its average error reduced by 16% when
reverb was applied to its recordings. Barring these anomalies, however, the effects – particularly the echo effect
– made negligible differences to the algorithm’s accuracy, for both the elevation and azimuth angles.

These findings certainly highlight an advantage of this algorithm, though the celebration thereof must be
limited. Indeed, the results showed that even in the presence of non-ideal effects, albeit simulated, the
correlation algorithm could still successfully calculate the correct time delay, and therefore the correct angle
of arrival. This occurs, arguably, because the method does not generally rely on the quality or contents of
the actual signals, but rather the similarity of the signals received at the four microphones. Thus, provided
the effects are applied somewhat uniformly to all channels, the algorithm can still perform fairly well. This
explains why the echo effect made little difference – the time delay of the decaying repetitions were applied
equally to each channel. This allowed the algorithm to perform just as well.

However, the proviso of uniformity highlights a key issue: in reality, these non-ideal effects would likely
not apply to each channel uniformly. In a reverberant room, for example, the relative positions of each
microphone, the sound source, and the scene objects – walls, furniture, roof, etc. – would all play a massive
role in affecting the recorded signals; and, importantly, each of the elements of the microphone array would
thus receive a different reverberated signal. This is bound to cause much more severe error degradation and
loss of accuracy. Similar arguments can be made for the real-world echo and overdrive effects. Hence, there
is much scope for future work to explore the impact of real world effects, or, at least, synthetic effects applied
non-uniformly to the microphone channels.
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5 Conclusion

From the results, it is clear that that the algorithm performs well on specific cases and performs poorly on
others. Therefore, the use of the algorithm would heavily depend on the use case. From figure 3, one can
see that the shape of the waveform for the phone event is very different from the other events. Further
research could be done to investigate if the shape of the waveform affects the accuracy of the angle of arrival
algorithms. Furthermore, possible improvements to the algorithm may include up-sampling the data. It
should be noted that the distance from the sound source to the microphone array does affect the accuracy of
the algorithm. This change in accuracy is not negligible, as a small error in the angle of arrival over a large
distance can cause a large error in the actual position of an object.

It was found that the surroundings of the sound source do not have a large effect on the accuracy of the
algorithm, although again, further research could provide more information about how the environment
affects the algorithm.

From figure 9 one can conclude that there is no clear relationship between the true angle and the error for
the azimuth angle. However, as the sound events in the data set had a narrow range of elevation angles, more
research must be done, with a more comprehensive data set, to determine if there is a relationship between
the true elevation angle and the corresponding output error.

As expected, when more than one sound event occurs at the same time the results from the algorithm are
not usable. This is most likely because the cross-correlation does not produce a peak at the right time due
to the two signals interacting with each other. Therefore an important conclusion is that this algorithm can
not be used for direction of arrival detection in cases when many sounds are overlapping. In these cases, a
more complex method, such as a neural network, may be more applicable.

The addition of echo, reverb and overdrive to the signals, surprisingly had a very small effect on the accuracy
of the algorithm, barring a few anomalies. However, these ‘non-ideal’ effects were synthetic and not actually
recorded in real signals. Thus, it is possible that the algorithm’s performance may deteriorate when the
conditions are not similar to those in the data set. There is certainly a lot of space for further research into
the effects of true, real-world ‘non-ideal’ effects on the performance of the algorithm.

In summary, the simple algorithm proved to work in fairly simple contexts. Further investigation is required
to make meaningful conclusions about some of the tests – such as the radius dependence – and this may
include sourcing a larger, more diverse data set. Some of the results obtained in this project were unequivocal,
though. For example, the algorithm clearly fails in the context of overlapping signals, and this constrains the
use-cases for which it could be reliably applied. Moreover, the class of the sound source was shown to have
a possible impact on the resulting error, and this further constrains its usefulness. Ultimately, using such a
straightforward approach cannot account for many of the complexities of real-world applications; however, it
should not be completely overlooked in modern investigations.

A Resource Repository

All the code and resources used in the project can be found here5.

5https://drive.google.com/drive/folders/12PrnlK9D84uCc3SOAHmLlOYRV3BqwcPc?usp=sharing
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