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Executive	Summary	
This project entails designing, simulating and building an analogue controller for a simulated 

helicopter model. The model is greatly simplified and has a single degree of freedom – the angle of 

attack of its rotors. By controlling this parameter, the helicopter is able to move vertically. This report 

provides an overview to the problem, along with some performance requirements for the design. 

Modeling of the system is discussed, followed by the design of an appropriate controller transfer 

function, the formation of an reliable analogue circuit, and finally the implementation of the system 

and analysis of its results. 
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1.	Introduction	and	Background	on	Helicopter	Control	
Harnessing flight is a complex yet brilliant feat of engineering, and the helicopter is no exception. Fundamentally, 

most human flight is based on the concept of an airfoil –– shown in figure 1a 

alongside. As air passes over the airfoil, a lift force is generated. The 

magnitude of this lift is a function of the angle of attack –– the angle which 

the chord-line makes with the direction of the relative wind. Whereas an 

airplane exploits this phenomenon by moving forwards (pushing its wings 

through the air) via thrust from its engines, a helicopter rotates its ‘wings’ 

(appropriately called rotors) which each generate lift as they move 

rotationally through the air. No forward movement of the fuselage (the body 

of the aircraft) is required, and thus a helicopter can take off vertically. 

Since the magnitude of the lift force generated by an airfoil is functionally dependent on the 

angle of attack (though not a linear relationship), one is able to control the magnitude of the 

upwards acceleration of the craft by actuating this angle, !. The specifics of this actuation are 

incredibly elegant, but are unfortunately outside of the scope of this report. Instead, the 

helicopter plant and actuator are considered as a single “black-box”, g(s), that needs to be 

controlled. Moreover, since a real helicopter is multivariate and non-linear, a simple simulation 

controlling only the angle of attack was used for the entirety of this report. By adjusting the 

voltage on a DAC input to a computer, the angle of attack could be controlled. The control 

panel for this simulation is shown in figure 1b. 

The purpose of controlling g(s) is to ensure safety, accuracy, and comfort for the pilot and 

passengers of the helicopter. A pilot should be able to use this control system to select a desired 

height, and the craft should move to that height with sufficient speed and minimal oscillations. 

The control action should be smooth and remain efficient – thus keeping costs down, while also 

exhausting the least amount of fuel necessary. This is an important environmental cost 

considering the impact the aviation industry can have on climate change. The “cost” 

of this control action can be quanitified, with one example being the Integral Square 

Control: "#$ = ∫ '())+,)
-.
/ . This suggests how much the controller is “working” in order to control the plant. 

 

2.	Technical	Specifications	
There are a handful of technical specifications to which the helicopter’s closed response 

should adhere. These are given below, along with some motivation for each one. Note in 

figure 1c how the speed and overshoot requirements are depicted. 

- In the worst case, there should be a finite steady-state error, and this should not be 

more than 5% of the setpoint value. 

o This is vitally important for the pilot to maneuver the vehicle accurately 

and safely. With a large steady-state error present, the pilot cannot be sure 

of her final position when moving from one place to another, and this 

severely limits her ability to do complex tasks. 

- Moreover, neither the noise nor any disturbances should cause the steady-state to violate the above condition 

o Disturbances and noise are an inevitable component of any practical system, such as this helicopter, and thus 

rejecting them properly is fundamentally important. 

- The speed of the closed loop should be at least twice as fast as that of the open loop (i.e. it should reach its steady state 

value in half the amount of time) 

o The speed of the craft is an important factor in convenience, as well as safety. Speed also enables the controller 

to navigate the helicopter out of a dangerous situation quickly. By choosing the closed loop parameters 

carefully, much better performance can be achieved, and this is, of course, preferable. 

- The transient response should not have an overshoot of more than 20% 

o Overshoot is a dangerous and possibly life-threatening issue in this context. Consider an example of a pilot 

wanting the helicopter to hover 10 metres above the sea in order to rescue a drowning person. If the craft 

‘overshoots’ as it is moving to its desired height, it may land in the water and many people will likely die. This 

emphasizes how critical this requirement is. 

o Overshoot relates directly to the damping coefficient restriction in the s-plane, by the formula: 

% Overshoot = 100 exp 5
678

9:67;
<. Rearranging, it can be found that, for this project, = ≥ 0.46  

Figure 1a: Diagram of a generic airfoil [1] 

Figure 2b: Control Panel for simulation 

Figure 3c: S-plane Restrictions 
(Author’s own diagram) 
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3.	Modeling,	System	Identification	and	Problem	Formulation	
By examining the open-loop step-response of the helicopter, an appropriate model of the plant was derived. Of course, 

the model was not completely accurate, but it provided a valuable insight into the workings of the plant, and thus 

enabled the design of an appropriate controller. 

After some experimentation, it was found that the helicopter had a hover voltage of 

2.5V – the input that provided zero net lift. Using this fact, the helicopter was 

brought to an approximate hover, and then various step inputs were injected – voltage 

values above 2.5V. 

Consider one of the output height step response graphs, shown in Figure 2. Two parts 

of the response were identified: a transient phase and steady-state phase. The latter’s 

response – a constant gradient – suggests that the plant is marginally stable, which 

implies that it has a pole at B = 0. The former, however, indicates that this is not the 

only pole of the system. If it was, the step response would be that of an ideal 

integrator, 

:

C
 . Yet, the non-linear transient response reveals that the plant is at least a 

second-order system, with another pole B < 0 (stable). The plant was hence modelled 

as: 

E(B) =
z(s)
p(s)

=
A ∙ J∗(s)
s(τ s + 1)

  

where B =
:

O
 is the second pole mentioned, z(s) are the zeros of the plant, and z*(s) is 

the monic polynomial equivalent of z(s). Unfortunately, determining the unknown parameters of a marginally stable 

system is a difficult task. Instead, the derivative of the plant was considered – EP(B). Theoretically, this entailed 

multiplying by B in the Laplace domain, which eliminated the marginally stable pole.  

The generic response for this now first-order system is given below: 

EP(B) =
A ∙ J∗(s)
τ s + 1

=
A(α s  +  1)

τ s + 1
 

Since the plant must be causal, the order of J∗(B) must be less than or equal to that of the denominator, and is here 

written as J∗(B) = (!B + 1). 

Practically, taking the derivative of the plant response entailed calculating the average velocity between each sample – 

that is, for the n

th

 sample: R[T] = 	
W[X]6W[X6:]

-[X]6-[X6:]
. This response is shown in figure 3. 

Observe that this step response is a discrete approximation of R(B) =
Y

C
∙ EP(B) , where B is the magnitude of the input 

step.  

By the initial value theorem with the observation R(0Z) = 0, and knowing [, ], ^ ≠ 0: 

lim
-→/

R()) = 0					 ⇒ 					 lim
C→e

BR(B) = lim
C→e

	]EP(B) =
fYg

O
= 0					 ⇒ 				! = 0. 

Hence, 

R(B) =
]
B
⋅ EP(B) =

[]
s(τB + 1)

=
[]
B
−

[]τ
τB + 1

=
[]
B
−

[]

B +
1
^

 

Considering the response in the time domain: 

ℒ6:[R(B)] = R()) = [] 51 − k6
-
l<	

This equation clearly agrees with the response shown in figure 3. Notice that lim
-→e

R()) = ][, and since ] is known: 

[ =
lim
-→e

R())

]
 

Hence, the parameter [ can be estimated from the output velocity step response. Multiple steps of varying magnitudes 

were injected into the plant, and the final modelled parameter was chosen as the average result. 
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Figure 4: Output Height Step Response 

Figure 5: Output Average Velocity Step Response 
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Furthermore, ^ can be found by rearranging R()): 

^ =
−)

ln 51 −
R())
[] <

 

To minimize the effect of noise, the value of ^ for a particular step was calculated for every velocity sample in the 

central region of the step response curve (as this is where the achieved response fit the theoretical curve best), and then 

averaged. Multiple tests were done, with different step sizes, and each test had an average value ^n  
, and a standard 

deviation value, on. It was noted that larger step sizes achieved smaller standard deviations (due to the higher signal-

to-noise ratio of the step signals), and were thus more accurate. The final ^ parameter accounted for this by taking a 

weighted averaged of the tests – weighted by the inverse of on: 

^ =
∑ q^n ∙

1
on
rX

n

∑ q
1
on
rX

n

 

There are now methods for finding [ and ^, and these are the only unknowns in EP(B), as well as in E(B). Hence, the 

system can be modelled. 

The described process above was followed using four different step sizes, injected by the DAC output from an 

STM32F0 microcontroller. The resulting plant model is given below: 

E(B) =
A

s(τ s + 1)
=

14.9197
s(9.3767s + 1)

 

Finally, the helicopter simulation is required to track a given height, but the ‘measurement’ of this signal is done by a 

DAC – an analogue voltage. Hence, there is a transfer function for the sensor that must be accounted for. The nature 

of this function was found using ℎ[T] =
wxy-z{|	}~-�~-	[X]

Ä|Å{Ç-	}~-�~-	[X]
 . Calculating this value for every sample, it was found to be  

constant: 

ℎ(B) = 0.58 

The block diagram of closed loop system is thus: 

 

 

where Ö(B)	is the designed controller, R(B) are the input disturbances, ,(B) are the output disturbances, Ü(B) is the 

desired output, k(B) is the error between the desired output and the actual output, and '(B) is the control signal. 

Real-life examples of disturbances include: 

- Input:  Change in ground height, change in gravitational force, change in air pressure, change in weather 

- Output:  Change in efficiency of engine, change in friction of rotor bearings, change in swashplate calibration 

 	

Figure 6: Block Diagram of Closed Loop (Author's own work) 

 



Student Number: TLBCAL002 

4 

 

4.	Controller	Design	and	Simulation	
There are at least three possible controllers that could be used to control the plant, and each is summarized in the table 

below: 

 Proportional Controller Lead-Compensator PI-Lead-Compensator 

Form Ö(B) = á Ö(B) = á 5
B + à
B + â

< Ö(B) = á 5
B + à
B

⋅
B + â
B + ä

< 

Advantage 
Extremely simple circuit – a 

single non-inverting  amplifier 

would work 

Good balance of 

simplicity and flexibility 

for project requirements 

Highly flexible; 

completely rejects step 

input disturbances 

Disadvantage 
Cannot speed up the system 

much; very easily creates large 

oscillations (overshoot) 

Cannot reject input 

disturbances with zero 

steady-state error 

Complex circuity 

required for 

implementation 

Considering the context of this project, the Lead-Compensator controller was chosen, where B = à, B = â are the 

designed pole and zero combination. The controller should be configured in output feedback –– which is the most 

simple and direct approach, as the achieved output is compared directly to the desired output. 

According to the principle of Internal Model Control, in order to track a desired output Ü(B) with zero steady-state 

error, Ü(B) must appear in the forward path of the system, ã(B) = 	ÖE(B). Thus, since it is required for the system to 

track a step input, there must exist an integrator term, q
:

C
r, in the forward path, ã(B). Notice that E(B) already contains 

an integrator term, and hence type number correction – the process of adding integrators to eliminate steady-state error 

– is unnecessary. 

Having said that, to reject input disturbances completely (with zero steady-state error), there is a more stringent 

requirement: the controller would need an additional integrator term, q
:

C
r, in the forward path, ã(B). This is why the 

Proportional-Integrator-Lead-Compensator controller is advantageous over the simpler lead-lag circuit – input 

disturbances can be appropriately handled. Nevertheless, considering that a minor steady state error is acceptable, the 

lead compensator controller is good enough. The steady-state error as a function of a step input disturbance, 

w

C
	, for this 

controller is given as: 

ke =
åâ

0.58áà
	 

It is difficult, however, to know the size of the step input disturbance, å, and hence it is difficult to design accordingly. 

Instead, the controller will be designed and the effect of the error will be considered empirically. 

The purpose of adding the zero, (B + à), is to move the slow, dominant poles further left – thus speeding up the 

system, and ensuring stability. In the proposed configuration, provided the gain is large enough, the closed-loop poles 

will not be slower than the this zero value. Recall that the controller is required to speed up the system by a factor of 

two or more, which means the closed loop poles must lie on the left of B = −2 ×
:

O
= −0.21. A value of à = 1 was 

hence chosen, such that all poles will be considerably faster than the requirements. 

The pole, (B + â), is only added to make the controller physically realizable – it should thus be non-dominant. Its 

specific value, however, is less strict, and was chosen as â = 10. 

The closed loop transfer function is thus: 

Eèê(B) =
ÖE(B)

1 + ℎÖE(B)
=

á q
B + 1
B + 10r ∙ 5

14.92
B(9.38B + 1)<

1 + 0.58	á q
B + 1
B + 10r ∙ 5

14.92
B(9.38B + 1)<

 

⟹ Eèê	(B) =
14.92	á(B + 1)

B(B + 10)(9.38	B + 1) + 8.65	á(B + 1)
=

14.92	á(B + 1)

9.38Bí + 94.8B+ + (10 + 8.65á)B + 8.65á
 

Of course, trying to understand the effect of varying the controller gain, á, is very challenging when viewed in the 

form above. Instead, a root locus plot is helpful and is given in figure 5. 
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Figure 7: Root Locus Plot for Lead-Compensator Controller 

There are three important á values to consider in this plot – the breakaway points. These are the values of K where 

ì

ìC
	î(B) = 0, where î(B) is the root locus gain of the forward path, ÖE(B). The breakaway points were found using 

SciLab, and (from right-to-left in the s-plane) correspond to gain values of: 

á = 0.018				; 					á = 18.78				; 				á = 19.59 

Since it is desirable to have low oscillatory action in this system, poles should ideally be chosen where the root locus 

path has zero imaginary component. This is clearly when the gain is 18.78 < á < 19.59. This is a noticeably small 

range, but by choosing á = 19, even with the tolerances, the resulting pole positions should be acceptable. 

Hence, the proposed controller is: 

Ö(B) = 195
B + 1
B + 10

< 

A simple step response was simulated in SciLab, and is shown below in figure 6. Note that to accuarately emulate an 

op-amp based controller, saturation limits were added to the controller at ±15V. 

The desired output was stepped up to +10 at ) = 1, and it is clear that the controller smoothly rises to its final value 

within 4 seconds (which is 5 time constants). The open loop time constant was ^ = 9.38 seconds, and hence the closed 

loop is much faster than the requirements. Furthermore, there is no overshoot/oscillatory action, which is a good thing. 

At ) = 10, an output step was added, and is quickly rejected within the appropriate amount of time. However, at ) =
20, an input disturbance is added, and the controller cannot handle this – as discussed previously. A steady-state error 

exists, and this may or may not contravene the project requirements – depending on the magnitude of the disturbance. 

Since this magnitude is not known, empirical testing is required to ensure the design criteria are still met. 

 

 

Figure 8: Response to various step inputs 
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5.	Controller	Implementation	
Two op-amp controller implementations are given in the table below: 

 Proportional Controller Lead-Compensator Circuit 
Circuit Diagram 

 

 

Derivation This circuit is a simple non-inverting 

amplifier. 

 

The transfer function is known to be: 

 

Ö(B) = 1 +
ó:
ó+

 

 

For example, to achieve a gain of 19, one 

can select ó: = 18ÖΩ, ó+ = 1ÖΩ. 

The first half of this circuit is a simple 

impedance divider, with 

Ö:(B) =
J+(B)

J:(B) + J+(B)
 

where J: = óí||$: and J+ = óö. 

óí||$: =
óí ⋅

1
B$:

óí +
1
B$:

=
óí

Bóí$: + 1
 

Therefore, Ö:(B) =
õú

ùû
üùû†°¢°

Zõú
= ⋯ 

… =
B +

1
óí$:

B +
1

óö$:

 

 

The second half of the circuit is a non-

inverting amplifier, which just applies a 

gain. The overall transfer function is: 

Ö(B) =
B +

1
óí$:

B +
1

óö$:

	(1 +
ó:
ó+
) 

Effect of Tolerances Consider if instead of their nominal 

values, the resistors had actual resistances 

at the upper/lower ends of their 

tolerances. For 5% resistors, for example: 

Ö•(B) = 1 +
105% ⋅ ó:
95% ⋅ ó+

= 1 + 1.11
ó:
ó+

 

 

Using the numerical example above, with 

a nominal gain of 19, the actual gain 

would be 20.98. This new controller gain 

value would cause higher oscillations in 

the proportional controller closed loop. 

Consider again if the components had 

actual values at the extremes of their 

tolerances. Capacitors often have a 

tolerance of 20%, and this really affects 

the result. For example: 

Ö(B) =
B + 1

95%óí ⋅ 80%$:

B + 1
95%óö ⋅ 80%	$:

	(… ) 

This means the desired pole and zero of 

the controller could be almost 25% 

larger or smaller than their designed 

values. Fortunately, in this root locus 

design, there is a large amount of room 

for error and tolerances. However, if 

tolerances end up negatively affecting 

the physical implemetation, component 

values would have to be rethought. 
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6.	System	Testing	
The final implemented system circuit is shown in the figure below: 

 

Figure 9: Full Circuit Implementation 

Note that in order to minimize the steady-state error due to the input disturbance, an offset voltage was added to '(B) 
when it was fed into the plant – this explains the inclusion of a non-invering summing amplifier, U2. Ideally, instead, 

the type number of the controller circuit should be increased (as in the PI lead-compensator), but there is a limit on the 

number of op-amps allowed, and hence this “calibration” approach is necessary. 

As for the interaction with the plant – which is actually a computer simutlation, y(t) is the output of the computer’s 

DAC – the actual height of the craft in volts; r(t) is the desired output height, also in volts. The control signal, u(t), is 

the input into the computer’s ADC which controls the angle of attack of the helicopter rotors. 

It is worth noting that the resistor values used in the passive lead compensator (ó:&	ó+) are fairly large, particularly 

ó: = 1.5®Ω. This is usually discouraged, due to the deteroiating noise performance at the extremely large and small 

resistance values. However, since the capacitor, $:, is exposed to alternating polarities – depending on the action 

required by the controller – it cannot be electrolytic. This severely limits the capacitance available for use, and thus 

pushes the resistor values to be quite large, and thus possibly very inaccurate. 

Interestingly enough, however, it was the capacitor that was most inaccurate. When set-up in a simple RC charging 

circuit, the expected time constant (and thus capacitance value) was half of its nominal value. This drastically changed 

the position of the poles and zeros of the controller, and thus completely changed the dynamics of the system. 

A real-life achieved response is shown in 

figure 8, below. The red line is r(t) – the 

desired output height; the blue line is y(t) – 

the actual output height; the black line is u(t) 

– the control signal. 

The speed of the system, as was the case in 

simulation, is clearly very good. The output 

of the helicopter reaches the desired output 

around 5 seconds after the step input is 

injected into r(t). This holds true for both big 

and small steps, upwards and downwards. 

This satisfies the design requirement of the 

closed loop needing to be at least twice as fast 

as the plant connected in open loop. 

The controller does not exhibit bang-bang 

characteristics – merely switching between 

Figure 10: Achieved response with analogue controller 
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saturating and being completely off, and this is a good thing. The control signal, u(t), remains fairly smooth 

throughout, and is thus acting efficiently – which is an important ‘cost’ consideration. 

Overshoot is minimal, and easily falls within the 20% criteria. 

Disturbance rejection is a tricky one. The output disturbance is easily rejected, as seen in the final ‘blip’ of the 

response in figure 8. However, the input disturbance, as mentioned frequently prior to this, results in a steady-state 

error. What is fascinating is that this error is not constant over the range of the helicopter height values. A calibration 

can be set using the variable offset (non-inverting summing amplifier, U2). However, as soon as the helicopter moves 

further up or down, the error again exists, and worsens the further one moves from the calibrated point. This evidence 

suggests that there is some sort of height influence on the magnitude of the input disturbance. And yet, this was not 

evident in the early-stages of testing the plant in open-loop. More research would have to be done into modelling the 

input disturbance such that it can be appropriately rejected through design. 

The actual output results when compared to both the theoretical and simulated output results are well matched. The 

speed of the system is accurately achieved, and the observed disturbance rejection (lack thereof) – though not ideal – 

can be explained mathematically, and is also seen in simulation. This coherence between the three fields is a positive 

sign. 

 

7.	Conclusions	
Using a lead-compensator circuit in an output feedback configuration is a good way of meeting the controller 

requirements. It proved to be a good blend of simplicity (as more sophisticated controllers became terribly complex in 

circuitry) and performance (it still performed very well in speed-up and in overshoot requirments). 

Choosing the poles and zeros for this controller using the root locus method is a wonderfully visual approach, and 

gives great insight into the nature of the system as a whole. By looking at the loci for this controller, one can see that 

there is an infinite gain margin – for the closed loop can never became unstable (with a positive controller gain). This 

is an encouraging characteristic and it gives the users some peace of mind. 

Notice that even with fairly large variations in the system model parameters, E(B), the closed loop should still perform 

fairly well. The loci will likely follow similar paths as before, and the system requirements will likely still be met. 

This means the closed loop is robust, as uncertainties in the system model will not affect the achieved results. 

Finally, as seen in the empirical results, the control signal, '()), remained smooth and efficient for the duration of the 

flight, and this implies that the cost of controlling the helicopter is acceptbale. At the very least, the cost is the same of 

controlling the helicopter manually. 
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