
Mini-Project A: Environment Logger
Devon Pugin† and Callum Tilbury‡

EEE3096S Class of 2019
University of Cape Town

South Africa
†PGNDEV001 ‡TLBCAL002

CONTENTS

I Introduction 1

II Requirements 1

III Specification & Design 2
III-A UML State Chart 2
III-B Deployment Diagram 2
III-C Circuit Diagram 2

IV Implementation 2
IV-A Reading from the ADC 2
IV-B Writing to the DAC 2
IV-C Voltage Output with Alarm 3
IV-D Print to Terminal 3
IV-E Push to Blynk 3

V Validation & Performance 3
V-A Overall Performance 3
V-B Analog-to-Digital Converter (ADC) . . 3
V-C Digital-to-Analog Converter (DAC) . . 4
V-D Threading Performance 4

VI Conclusion 4

LIST OF FIGURES

1 UML Use-Case Diagram for System 1
2 UML State Chart for System 2
3 Deployment Diagram for System 2
4 Schematic for System 2
5 Write register structure for the DAC 2
6 Absolute error achieved on ADC 3

PLAGIARISM DECLARATION

1) We know that plagiarism is wrong. Plagiarism is to use
another’s work and pretend that it is one’s own.

2) We have used the IEEE convention for citation and
referencing. Each contribution to, and quotation in, this
project report from the work(s) of other people, has been
attributed and has been cited and referenced.

3) This project report is the collective work of the team
members of this group.

4) We have not allowed, and will not allow, anyone to copy
our work with the intention of passing it off as their own
work or part thereof.

Signed:

Devon Pugin

Callum Tilbury

Callum Tilbury
Devon Pugin

Callum Tilbury
Callum Tilbury

I. INTRODUCTION

The aim of this project was to prototype a simple
environment logger – one that could record ambient
temperature, humidity, and light, and report these values to
a user. Two interfaces were designed: one to be viewed in
the Raspberry Pi terminal, and another on a phone running a
simple Blynk application.

Since the project was a prototype, it was built on
a breadboard. This enabled fast debugging, and easy
restructuring when required. Moreover, for convenience, rather
than using an actual humidity sensor, a simple potentiometer
was used. That way, all three ‘input’ parameters of the system
could easily be altered for testing (since light and temperature
were already fairly easy to adjust).

All code for the Raspberry Pi was written in a single Python
3 script. Python is a massively popular, simple language that
has great support online, as well as extensive libraries for
GPIO interfacing, SPI and I2C communications, and Blynk.
Due to the relative straightforward nature of the project,
an object-orientated approach was not taken; instead, global
variables were simply shared around the program. This is
not necessarily a scalable approach, but is justifiable for the
context of the project.

This report details key factors involved in the design of this
project. After this brief introduction, the project’s requirements
are presented, primarily using a UML Use Case diagram.
Thereafter, a high-level design overview is given – showing
important components and their respective interconnections. A
state chart, deployment diagram, and schematic are all given
here. Moving on, sections of important code are provided,
and discussed briefly. Subsequently, the system is evaluated
and validated, and the performance of the resulting prototype
is considered. Finally, some concluding remarks are made.

II. REQUIREMENTS

Figure 1 shows a UML Use-Case Diagram which describes
the requirements of the system.

Fig. 1: UML Use-Case Diagram for System

There are some key points that must be made which are not
immediately obvious from the Use-Case Diagram alone. They
are listed below:

• The ‘interval time’ button iterates through the values: [1,
2, 5] seconds. If the time is set to 5 seconds and the
button is pressed, it moves back to 1 second, and so on.

• The code is scalable to add/remove as many interval times
as desired

• Information is sent to Blynk at the same rate at which
the text is printed to the terminal.

• Information is sent to Blynk on a separate thread as to
prevent network requests blocking the main thread.

• Resetting the system time does not affect any alarm
functionality.

• Starting/stopping the system begins/ends the thread on
which the ADC reads the data.

• When the alarm is triggered, the system starts a 1kHz
PWM signal on a pin connected to a buzzer. The alarm
is thus monotonic.

• Once an alarm is dismissed, it cannot sound for another 3
minutes. This period begins when the alarm first activates,
not when it is dismissed.

• The Real-Time Clock (RTC) module is not shown here.
This is because there is nothing in the Python code that is
causing the RTC to tick; instead, a kernel driver is used
such that the Pi uses the RTC time as its own time.

1

https://blynk.io/

III. SPECIFICATION & DESIGN

A. UML State Chart

The state chart in figure 2 describes an overview of the
main functionality of the system. Each depicted state or
connection between states fulfils a particular requirement given
in section II.

State Machine Embedded sysytems
Devon Pugin | October 13, 2019

Not monitoring
Start monitoring press interval button

Change
interval time

changes interval
from 1->2s or
2->5s or 5->1s

Monitor every
x seconds

x depends on
deserid iterval,

starts at 1s

Monitor Light and
Humidty Level

press interval button

Alarn Triggered and
3 minute timer

begins[Alarm hasn't been turned off in last three minutes
Light and Humidity above threshold

Cleared data and
set system time to 0

Press reset buttton

Alarm off

Press button to dismiss alarmLight and Humidity above threshold[Alarm has been set off in past 3 minutes]

[press button to start]

Stopped monitoring
Press button to stop/start

Send to Blynk

Fig. 2: UML State Chart for System

B. Deployment Diagram

To supplement the state chart shown above, a deployment
diagram is shown in figure 3. This enables one to get a
high-level, broad understanding of the system components –
specifically important software and hardware, and how they
interact.

<<device>> Raspberry Pi
{Buster}

<<device>>
MacBook Pro

{Mojave}

<<protocol>>

ssh

<<device>>
Android Phone

<<device>>
Blynk Server

Internet

Internet

<<device>>
RTC

<<protocol>> I2C

<<protocol>>

<<protocol>>

<<device>>
ADC

SPI

<<protocol>>

<<device>>
DAC

<<protocol>> SPI

project.py

RPi.GPIO, time, spidev,
threading, blynklib

Blynk app

Terminal with ssh

RTC Kernel Driver

Fig. 3: Deployment Diagram for System

C. Circuit Diagram

Figure 4 shows the full circuit schematic for the project.
This diagram entails all that was built on the breadboard,
and the respective connections to the Pi. As a short aside,
when comparing the schematic to the deployment diagram in
figure 3, it is clear that there are additional connections made

off the breadboard – these are network related connections
between the various devices.

Fig. 4: Schematic for System

IV. IMPLEMENTATION

This section presents some key code1 snippets that are
essential to the project.

A. Reading from the ADC

1 # Read a [0, 1023] value from a chosen ADC channel
2 def ADC_read(chan):
3 adc = spiADC.xfer2([1,8 + chan << 4,0])
4 data = ((adc[1] & 3) << 8) + adc[2]
5 return data

This code simply performs a read of the ADC registers, for
a desired channel. The logic used is based off the register
positions of the MCP3008 chip.

B. Writing to the DAC

1 # Write a [0,1023] value to the DAC for [0, 3.3]V
2 def DAC_write(value):
3 lowByte = value << 2 & 0b11111100
4 highByte = ((value >> 6) & 0xff) | 0b00110000
5 spiDAC.xfer2([highByte, lowByte])

This code writes a 10-bit number to the DAC for conversion
to a voltage. The bitshifts and logic operations manipulate the
data such that it suits the DAC’s register structure, as shown
in figure 5.

Fig. 5: Write register structure for the DAC

1Actually pseudocode as certain variable names and function calls have
been simplified

2

C. Voltage Output with Alarm

1 # Function to put desired voltage on DAC output;
2 # also signals the alarm
3 def output_voltage(voltage):
4 global alarm, alarm_on, last_alarm_time_secs,
5 output_Volts
6 output_Volts = voltage
7 if(voltage outside threshold):
8 if (currentTime())
9 > (last_alarm_time_secs + 3*60)):

10 alarm_on = True
11 alarm.start(50) # 50% duty cycle
12 last_alarm_time_secs = currentTime()
13 output_val = int((voltage/3.3)*(2**10-1))
14 DAC_write(output_val)

This code is called each time the ADC has finished reading
the three inputs. It writes the voltage value to the DAC, and
most importantly, starts the alarm if appropriate. Notice the
two checks in place for turning on the alarm: both checking if
the voltage is outside of the threshold, and checking if it has
been over 3 minutes since the last alarm.

D. Print to Terminal

1 # Function to print values to monitor
2 def print_monitor():
3 curr_time = time.localtime()
4

5 monitor_time = currTime
6 monitor_sys_time =
7 secs_to_string(currTime-startTime)
8 monitor_humidity =
9 (humidity_val*3.3/1023)

10 monitor_temp = convert_temp
11 (temp_val + ADC_TEMP_CORRECTION)
12 monitor_light = light_val
13 monitor_outputV = output_Volts
14

15 # Terminal:
16 monitor_string = (...)
17 print(monitor_string)

The purpose of the above code is to display the log information
in the terminal of whatever is running the Python script. The
global variables storing log information are loaded into the
function, and are manipulated into the correct format. The
appropriate output string is built and formatted, and is then
printed. This occurs every time the display is printed.

E. Push to Blynk

1 blynk.virtual_write(BLYNK_TIME, monitor_time)
2 blynk.virtual_write(BLYNK_HUM, monitor_humidity)
3 blynk.virtual_write(BLYNK_TEMP, ...)
4 blynk.virtual_write(BLYNK_LIGHT, ...)
5 blynk.virtual_write(BLYNK_ALARM, 255)
6 blynk.set_property(BLYNK_ALARM, ’color’, ...)
7 blynk.virtual_write(BLYNK_OUTPUTV, ...)

This code actually exists within the print monitor() code
from above, but is presented separately for clarity. It uses a
convenient Blynk library for Python, and requires a simple
set-up of virtual pins on the Blynk app. Then, once setup,
those pins can be addressed easily using the virtual write()
function.

BLYNK TIME, etc. are simply the constants holding the
virtual pin numbers for the various parameters.

V. VALIDATION & PERFORMANCE

It is fundamentally important to validate the results of the
project – both on a system level, as well as each component
individually.

A. Overall Performance

On the whole, the project performed well, and met all
the initial specifications. All of the desired functionality
was included, and thorough system testing was performed –
including arbitrary actions and alternative orders of operation.
The codebase is believed to be reliable enough to handle
anomalies appropriately.

B. Analog-to-Digital Converter (ADC)

To test the accuracy of the ADC, the potentiometer
(simulation of humidity) was varied through samples of its
full range, and the resulting digital value – converted to Volts
– was compared to the actual input voltage. The results of this
experiment are shown in the graph in figure 6.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

Ab
so

lu
te

 E
rro

r
of

 D
ig

ita
l V

ol
ta

ge
 V

al
ue

Analog Voltage (V)

Fig. 6: Absolute error achieved on ADC

Notice that in the central range of voltages, the ADC became
fairly inaccurate – with an absolute error as high as 7%.

The effect of the ADC’s inaccuracy was most noticeable
in the temperature sensor reading. For example, consider
the situation at room temperature (25◦C). The relationship
between the ambient temperature and the sensor’s output
voltage [] is given by:

Vout = TA · TC + V0◦C

where TA is the ambient temperature, and, for the
MCP9700A, TC = 0.01 V

◦C ; V0◦C = 0.5V . Hence, the desired
output voltage is Vout = 0.75V . This voltage value was indeed
observed on a multimeter at room temperature. However, the
ADC error causes the digital value to be recorded as 198 – that
is 198

1023 ×3.3V = 0.64V . Now, working backwards, instead of
reading the correct temperature of 25◦C, the temperature is
reported as 14◦C on the digital device – which is a big error
for this context. This problem is aggravated by the fact that
most of the temperature readings will be towards the middle
of the supply’s range. This is exactly where the ADC performs
badly.

3

To rectify the error, an offset can be applied to the read
ADC value. Of course, the error is clearly non-linear (see
figure 6) over the input voltage range, and hence a linear
shifting is not a complete solution. However, within the context
of an environment logger, it is these so-callled ‘middle’ values
that matter most (it is unlikely that a greenhouse will reach
temperatures of greater than 100◦C).

Note that the ADC inaccuracy is not as severe for the light
reading (from the LDR), as this setup needs to be calibrated
either way. The effect on the humidity readings depends on
the sensor used.

C. Digital-to-Analog Converter (DAC)

The DAC, on the other hand, performed well. Throughout
the range of output voltages [0, 3.3] V, the DAC output was
always within ±0.01V of the desired output.

D. Threading Performance

Two threads were created within the project code – one
to read the ADC values, and another to push data to the
Blynk server. Both of these performed well, and it resulted
in a smooth user interaction experience. The data in Blynk
was never more than one sample behind the Pi itself – this is
acceptable given the context.

VI. CONCLUSION

The prototyping of this system went well. As to be expected,
several problems were encountered – such as the RTC not
ticking (incorrect capacitor values), SPI not working (using
the wrong SPI overlay), and so on. Fortunately, however, due
to the ‘breadboard’ approach, the circuit was easy to adapt and
improve as time went on, and this enabled fast and effective
prototyping.

Regarding the system at large, the requirements were met
and the project operated smoothly. The sensors seemingly
worked well, and decent results were achieved. The ADC –
being low-cost – had some substantial errors, and the full
effect of this must still be considered. However, with some
careful calibration, the system should be accurate enough for
the context.

As for turning this project into a product, there is indeed
great potential, though some changes are essential for this
potential to come into fruition: of course, the system would
need to be attached to a well-designed, compact, printed
circuit board (PCB). Moreover, an actual humidity sensor
would have to be implemented. The codebase would also
have to be reworked into something that is more scalable, and
possibly object-orientated (though still in Python). The cost
of commercial licensing would have to be considered for the
Blynk application, and an improved User Interface would need
to be developed. More widgets are required, as a greater locus
of control should be given to the user from the Blynk app.
Finally, much more extensive testing would have to occur.

Once these changes are made, there is definitely great
potential for such a product to succeed in the market. There
are plenty people – from hobbyist-gardeners to those who are

more qualified – who would value the useful and insightful
information such an environment logger can provide. It could
be assistive in scientific research (though the sensors and ICs
should be upgraded), as well as education (where lower quality
is acceptable for a lower cost).

https://blynk.io/pricing
https://blynk.io/pricing

	I Introduction
	II Requirements
	III Specification & Design
	III-A UML State Chart
	III-B Deployment Diagram
	III-C Circuit Diagram

	IV Implementation
	IV-A Reading from the ADC
	IV-B Writing to the DAC
	IV-C Voltage Output with Alarm
	IV-D Print to Terminal
	IV-E Push to Blynk

	V Validation & Performance
	V-A Overall Performance
	V-B Analog-to-Digital Converter (ADC)
	V-C Digital-to-Analog Converter (DAC)
	V-D Threading Performance

	VI Conclusion

